ORIGINAL PAPER

Facile radical mediated synthesis of azetidin-2,3-diones: potential synthons for biologically active compounds

Shamsher S. Bari · Mehmood S. Magtoof · Aman Bhalla

Received: 1 October 2009/Accepted: 10 June 2010/Published online: 28 July 2010 © Springer-Verlag 2010

Abstract An operationally simple and efficient approach for the synthesis of azetidin-2,3-diones is described. The starting substrate 2-(2-bromobenzyloxy)ethanoyl chloride was treated with appropriate Schiff's bases in triethylamine and dichloromethane to afford 3-(2-bromobenzyloxy)azetidin-2-ones. The synthesis of azetidin-2,3-diones was successfully achieved via radical mediated rearrangement of appropriately substituted 3-(2-bromobenzyloxy)azetidin-2-ones using *n*-tributyltin hydride and AIBN in refluxing dry benzene.

Keywords Azetidin-2,3-diones \cdot 3-(2-Bromobenzyloxy)azetidin-2-ones $\cdot \beta$ -Lactams \cdot Radical mediated rearrangement

Introduction

Since the discovery of new β -lactam antibiotics such as monobactams and nocardicins, a lot of interest has been aroused in the study of monocyclic β -lactams [1, 2]. The synthesis of functionalized monocyclic β -lactams is an important area of research. Recently, monocyclic β -lactams have been shown to be biologically active as cholesterol acyl transferase inhibitors [2–4], thrombin inhibitors [5], and apoptosis inductors [6, 7].

S. S. Bari (🖂) · A. Bhalla

M. S. Magtoof Department of Chemistry, Science College, Thiqar University, Nashyria, Thiqar, Iraq Several research groups have shown that azetidin-2,3diones are useful synthetic targets for the construction of β -lactams with the cephamycin, asparenomycin, and noncardican type side chains [8]. In addition, azetidin-2,3diones are important synthons for 3-alkyl/aryl/allyl- β -lactams, 3-alkylidene- β -lactams, and bicyclic β -lactams [9]. Moreover, azetidin-2,3-diones with known configuration serve as the precursors to α -hydroxy- β -amino acids [10], peptides [11, 12], taxol, taxotere (highly promising anticancer drugs) [13–15], and bestatin, a peptide enzyme inhibitor with antimicrobial, anticancer, and immunomodifier properties [16].

Over the past few decades, many synthetic methods, such as oxidation of 3-hydroxyazetidin-2-ones [8], reaction of 3-hydroxy- β -lactam with diisopropyl carbodiimide and methyl sulfoxide [17, 18], treatment of 3-amino- β -lactam with mercuric chloride [19], reactions of bis(3-ethyl-thio)azetidin-2-ones with excess of *N*-bromosuccinimide in acetonitrile/water [20], ozonolysis of α -ethylidene- β -lactams [21], and hydrolysis of 3-chloro-3-mercaptoazetidin-2-ones with moist silica gel and catalytic amount of zinc chloride [22], have been developed for the synthesis of azetidin-2,3-diones. Recently, a convenient access to enantiopure azetidin-2,3-diones using L-(+)-diethyl tartrate derived ketenes and imines in a Staudinger cycloaddition has been listed [9].

The application of free-radical reactions in organic synthesis has grown enormously during the past decade providing a wealth of useful new chemistry [23, 24]. Very recently, the stereoselective synthesis of bi- and tricyclic β -lactams by radical cyclization has been established as an efficient methodology in organic chemistry [25, 26]. In connection with our earlier studies aimed towards the synthesis of novel β -lactams and their functionalization [27–31], we report herein full details of a facile synthetic

Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India e-mail: ssbari@pu.ac.in

route to azetidin-2,3-diones through radical mediated rearrangement of appropriately substituted 3-(2-bromo-benzyloxy)azetidin-2-ones.

Results and discussion

2-(2-Bromobenzyloxy)ethanoic acid (2) required for these studies was prepared by treating 2-bromobenzyl alcohol (1) with ethyl 2-chloroethanoate using sodium hydride in refluxing dry toluene, followed by subsequent acidification with 20% hydrochloride (Scheme 1) according to the reported procedure [32–35]. The starting substrate, 2-(2-bromobenzyloxy)ethanoyl chloride (3), was conveniently prepared by reaction of acid 2 and phosphorus trichloride (Scheme 1) using a literature method [36].

2-(2-Bromobenzyloxy)ethanoyl chloride (**3**) was further used as a ketene precursor in a Staudinger cycloaddition reaction. Initially, reaction of **3** with Schiff base **4a** in the presence of triethylamine and dichloromethane exclusively afforded *cis*-3-(2-bromobenzyloxy)- β -lactam **5a** in good yield according to the procedure reported for synthesis of 3-phenylthio/benzylthio- β -lactams [27, 28]. This reaction was performed with different Schiff's bases **4b**–**4f** under similar conditions and furnished *cis*-3-(2-bromobenzyloxy)- β -lactams **5b**–**5f** in good yields (Scheme 2; Table 1).

β-lactams **5a–5f** were characterized by FT-IR, ¹H NMR, ¹³C NMR, ¹³C DEPT-135 NMR spectroscopic studies, and CHN analysis. The stereochemistry at C3-H and C4-H of β-lactams **5a–5f** was assigned *cis* on the basis of coupling constants (J = 4.8-5.1 Hz, C3-H and C4-H) in ¹H NMR spectra [28].

Scheme 1

Table 1 Synthesis of *cis*-3-(2-bromobenzyloxy)- β -lactams 5a–5f from substrates 3 and 4a–4f

Entry	Product	\mathbb{R}^1	\mathbb{R}^2	Yield ^a (%)
1	5a	C ₆ H ₅	4-MeO-C ₆ H ₄	79
2	5b	4-Br-C ₆ H ₄	4-MeO-C ₆ H ₄	72
3	5c	4-MeO-C ₆ H ₄	4-MeO-C ₆ H ₄	76
4	5d	4-MeO-C ₆ H ₄	4-Me-C ₆ H ₄	69
5	5e	$4-Cl-C_6H_4$	4-Me-C ₆ H ₄	65
6	5f	C_6H_5	C_6H_5	70

^a Isolated yield

The exclusive formation of *cis*-3-(2-bromobenzyloxy)- β -lactams **5** in this case can be rationalized on the basis of the similar mechanism as discussed in our recent publication [28] and through the previous experimental classification as proposed by George and Ravikumar [37].

The synthesis of azetidin-2,3-diones **6a–6f**, serving as potential synthons for biologically active compounds, was successfully achieved through radical mediated rearrangement of appropriately substituted 3-(2-bromobenzyloxy) azetidin-2-ones **5a–5f**. Initially, the reaction of **5a** with 1.1 equiv of *n*-tributyltin hydride and a catalytic amount of AIBN in refluxing dry benzene afforded azetidin-2,3-dione **6a** in good yield. Similar results were obtained for free radical intramolecular rearrangements of β -lactams **5b–5f** (Scheme 3; Table 2).

The structures of azetidin-2,3-diones **6a–6f** were established on the basis of their spectral data such as UV-vis, FT-IR, ¹H NMR, ¹³C NMR, ¹³C DEPT-135 NMR, and CHN analysis. The azetidin-2,3-diones **6a**, **6d**, **6f** are

Scheme 3

 Table 2
 Synthesis of azetidin-2,3-diones 6 through radical mediated

 rearrangement of 5 using *n*-Bu₃SnH and AIBN

Entry	Substrate	R^1	\mathbb{R}^2	Product	Yield ^a (%)
1	5a	C ₆ H ₅	4-MeO-C ₆ H ₄	6a	76
2	5b	$4\text{-}Br\text{-}C_6H_4$	$4\text{-MeO-C}_6\text{H}_4$	6b	73
3	5c	4-MeO-C ₆ H ₄	4-MeO-C_6H_4	6c	69
4	5d	$4-MeO-C_6H_4$	4-Me-C ₆ H ₄	6d	71
5	5e	$4-Cl-C_6H_4$	4-Me-C ₆ H ₄	6e	64
6	5f	C_6H_5	C_6H_5	6f	68

^a Isolated yield

Scheme 4

known, and they were identified by comparison of their data with those in [22]. However, the unreported data of **6a**, **6d**, **6f** have been given in the "Experimental".

A plausible mechanism for radical mediated rearrangement of *cis*-3-(2-bromobenzyloxy)azetidin-2-ones **5** has been depicted in Scheme 4. Homolytic cleavage of the C-Br bond of β -lactam **5** by *n*-tributyltin hydride and the radical initiator AIBN afforded phenyl radical **7**, which further on C3-H abstraction generated C-3 radical β -lactam **8**. The radical intermediates **8** undergo rearrangement involving benzylic carbon–oxygen (C–O) bond cleavage to furnish azetidin-2,3-dione **6** in good yields.

In conclusion, we described a convenient route to azetidin-2,3-diones **6a–6f**, employing radical mediated rearrangements of *cis*-3-(2-bromobenzyloxy)azetidin-2-ones **5a–5f** using *n*-tributyltin hydride and AIBN in refluxing dry benzene. Due to the operational simplicity and efficiency, this synthetic procedure represents an interesting alternative to existing methodologies.

Experimental

Melting points were determined in open glass capillaries on a melting point apparatus and are corrected. FT-IR spectra were recorded on a Perkin-Elmer 1430 FT-IR spectrophotometer (\bar{v} in cm⁻¹). ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a JEOL AL 300 (300 MHz) spectrometer. The chemical shifts are given in δ (ppm) relative to tetramethylsilane as an internal standard $(\delta = 0 \text{ ppm})$ for ¹H NMR and CDCl₃ ($\delta = 77.0 \text{ ppm}$) for ¹³C NMR spectra. Ultraviolet spectra were recorded on a JASCO V-530 UV-vis spectrophotometer. Elemental analysis data were performed with a Perkin-Elmer 2400 elemental analyzer. Their results agreed favorably with the calculated values. For purification, column chromatography was carried out using silica gel (60–120 mesh, Merck) with *n*-hexane:EtOAc (9:1) as an eluent system. Analytical thin layer chromatography (TLC) was performed using silica gel G (Merck) with n-hexane:EtOAc (8:2) as an eluent system. For visualization, TLC plates were stained with iodine vapors. The reactions for the synthesis of *cis*-3-(2-bromobenzyloxy)- β -lactams **5a**–**5f** and azetidin-2,3-diones **6a–6f** were carried out under dry and deoxygenated nitrogen atmosphere. Sodium hydride (Qualigen), ethyl 2-chloroethanoate (Alfa Aesar), *n*-tributyltin hydride (Fluka), AIBN (Himedia), and all other commercially available compounds/reagents were of analytical grade and used without further purification. Dichloromethane distilled over P₂O₅ was redistilled over CaH₂ before use. Benzene and toluene were distilled from sodium-benzophenone immediately before use.

2-(2-Bromobenzyloxy)ethanoic acid (2, C9H9BrO3)

The starting acid **2** was prepared from 1.87 g **1** (10.0 mmol), 0.50 g sodium hydride (20.8 mmol), and 1.22 g ethyl 2-chloroethanoate (10.0 mmol) in 55 cm³ toluene according to [32–35]. Colorless crystalline solid (1.81 g, 74%); m.p.: 67–68 °C (Ref. [32] 70 °C); FT-IR (CHCl₃): $\bar{\nu} = 1,757$ (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 3.90$ (s, 2H, PhCH₂O), 4.40 (s, 2H, CH₂CO), 7.00–7.90 (m, 4H Ar–H), 8.89 (s, 1H, COOH) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 174.7$ (C=O), 136.6, 130.0, 128.2, 127.7 (*Ar–*C), 72.9 (*Ph*CH₂O), 66.2 (*C*H₂CO) ppm.

 $\label{eq:2-2-brown} 2\mbox{-}(2\mbox{-}Bromobenzyloxy) ethanoyl\ chloride$

$(\mathbf{3}, C_9H_8BrClO_2)$

Compound **3** was prepared from 2.00 g **2** (8.16 mmol) and 1.12 g PCl₃ (8.16 mmol, 0.71 cm³) according to [36]. Yellow oil (1.80 g, 83%); FT-IR (CHCl₃): $\bar{\nu} = 1,753$ (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 3.60-3.65$ (m, 4H, 2CH₂), 7.05–7.80 (m, 4H, Ar–H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 171.4$ (C=O), 139.3, 132.7, 128.5, 126.1, 120.3 (*Ar*–C), 79.3 (*Ph*CH₂O), 65.7 (CH₂CO) ppm.

General procedure for the preparation of compounds 5a-5f

Compounds **5a–5f** were prepared from 1.1 mmol **3**, 1.0 mmol **4a–4f**, and 3.0 mmol Et₃N in 50 cm³ CH₂Cl₂ by the procedure reported earlier for the synthesis of 3-phenyl/ benzylthio- β -lactams [27, 28].

cis-3-(2-Bromobenzyloxy)-1-(4-methoxyphenyl)-4-phenylazetidin-2-one (**5a**, C₂₃H₂₀BrNO₃)

Starting from 1.37 g **3** (5.19 mmol), 1.0 g **4a** (4.73 mmol) and 1.43 g Et₃N (1.97 cm³, 14.15 mmol). Colorless crystalline solid (1.72 g, 79%); m.p.: 142–144 °C; FT-IR (KBr): $\bar{\nu} = 1,748$ (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 3.70$ (s, 3H, OMe), 4.31 (d, 1H, J = 13.2 Hz, PhCH₂O), 4.58 (d, 1H, J = 13.2 Hz, PhCH₂O), 4.90 (d, 1H, J = 4.8 Hz, C4-H), 5.10 (d, 1H, J = 4.8 Hz, C3-H), 6.70–7.40 (m, 13H, Ar–H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 163.4$ (C=O), 129.3, 129.1, 128.0, 127.8, 127.6, 117.2, 113.8 (*Ar*–C), 82.1 (C–3), 72.0 (*Ph*CH₂O), 61.2 (C–4), 54.8 (OCH₃) ppm.

$\label{eq:cis-3-(2-Bromobenzyloxy)-4-(4-bromophenyl)-1-(4-bromophenyl)azetidin-2-one~(\mathbf{5b},~\mathbf{C}_{23}\mathbf{H}_{19}\mathbf{Br}_2\mathbf{NO}_3)$

Starting from 0.99 g **3** (3.75 mmol), 1.0 g **4b** (3.44 mmol) and 1.04 g Et₃N (1.44 cm³, 10.29 mmol). Colorless crystalline solid (1.33 g, 72%); m.p.: 139–141 °C; FT-IR (KBr): $\bar{v} = 1,753$ (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 3.69$ (s, 3H, OMe), 4.40 (d, 1H, J = 12.9 Hz, PhCH₂O), 4.60 (d, 1H, J = 13.2 Hz, PhCH₂O), 4.96 (d, 1H, J = 4.8 Hz, C4-H), 5.00 (d, 1H, J = 5.1 Hz, C3-H), 6.67–7.38 (m, 12H, Ar–H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.5$ (C=O), 132.6, 132.3, 131.7, 129.6, 129.3, 127.7, 127.4, 122.7, 118.7, 114.5 (*Ar*–C), 83.3 (C–3), 71.9 (*Ph*CH₂O), 61.5 (C–4), 55.4 (OCH₃) ppm.

cis-3-(2-Bromobenzyloxy)-1,4-bis(4-methoxyphenyl)azetidin-2-one (5c, $C_{24}H_{22}BrNO_4$)

Starting from 1.19 g **3** (4.51 mmol), 1.0 g **4c** (4.14 mmol) and 1.25 g Et₃N (1.72 cm³, 12.37 mmol). Colorless crystalline solid (1.54 g, 76%); m.p.: 138–140 °C; FT-IR (KBr): $\bar{\nu} = 1,749$ (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 3.73$ (s, 3H, OMe), 3.79 (s, 3H, OMe), 4.50 (d, 1H, J = 4.8 Hz, C4-H), 4.62 (d, 1H, J = 13.1 Hz, PhCH₂O), 4.70 (d, 1H, J = 4.8 Hz, C3-H), 4.81 (d, 1H, J = 13.1 Hz, PhCH₂O), 6.71–7.33 (m, 12H, Ar–H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 163.1$ (C=O), 159.8, 156.2, 137.2, 130.9, 129.2, 128.5, 128.2, 128.0, 127.4, 127.3, 118.7, 114.5, 114.3 (*Ar*–C), 89.8 (C–3), 73.0 (*Ph*CH₂O), 63.3 (C–4), 55.3 (OCH₃), 55.0 (OCH₃).

cis-3-(2-Bromobenzyloxy)-4-(4-methoxyphenyl)-1-(4-meth-ylphenyl)azetidin-2-one (**5d**, C₂₄H₂₂BrNO₃)

Starting from 1.28 g **3** (4.85 mmol), 1.0 g **4d** (4.43 mmol) and 1.34 g Et₃N (1.85 cm³, 13.26 mmol). Colorless crystalline solid (1.51 g, 69%); m.p.: 145–146 °C; FT-IR (KBr): $\bar{\nu} = 1,752$ (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 2.26$ (s, 3H, Me), 3.72 (s, 3H, OMe), 4.34 (d, 1H, J = 13.2 Hz, PhCH₂O), 4.90 (d, 1H, J = 12.9 Hz, PhCH₂O), 4.96 (d, 1H, J = 4.8 Hz, C4-H), 5.11 (d, 1H, J = 4.8 Hz, C3-H), 6.81–7.42 (m, 12H, Ar–H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 163.7$ (C=O), 132.5, 130.0, 129.8, 129.6, 129.3, 129.1, 128.9, 127.5, 127.4, 126.3, 121.9, 117.5, 115.2, 114.1 (*Ar*–C), 83.3 (C–3), 71.5 (*Ph*CH₂O, 64.8 (C–4), 55.0 (OCH₃), 21.1 (CH₃) ppm.

$cis\hbox{-} 3\hbox{-} (2\hbox{-} Bromobenzyloxy)\hbox{-} 4\hbox{-} (4\hbox{-} chlorophenyl)\hbox{-} 1\hbox{-}$

(4-methylphenyl)azetidin-2-one (**5e**, C₂₃H₁₉BrClNO₂) Starting from 1.26 g **3** (4.78 mmol), 1.0 g **4e** (4.35 mmol) and 1.31 g Et₃N (1.81 cm³, 12.97 mmol). Colorless crystalline solid (1.35 g, 65%); m.p.: 144–145 °C; FT-IR (KBr): $\bar{v} = 1,754$ (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 2.21$ (s, 3H, Me), 4.43 (d, 1H, J = 11.7 Hz, PhCH₂O), 4.54 (d, 1H, J = 11.7 Hz, PhCH₂O), 4.82 (d, 1H, J = 4.8 Hz, C4-H), 5.01 (d, 1H, J = 5.1 Hz, C3-H), 6.92–7.34 (m, 12H, Ar–H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 163.0 (C=O), 136.2, 134.6, 133.3, 132.3, 129.4, 129.2, 128.6, 128.1, 127.8, 117.0 (*Ar–*C), 82.1, 72.2 (*Ph*CH₂O), 60.8 (C–4), 20.9 (CH₃) ppm.

cis-3-(2-Bromobenzyloxy)-1,4-diphenylazetidin-2-one (**5f**, $C_{22}H_{18}BrNO_2$)

Starting from 1.59 g **3** (6.03 mmol), 1.0 g **4f** (5.51 mmol) and 1.67 g Et₃N (2.31 cm³, 16.53 mmol). Colorless crystalline solid (1.65 g, 70%); m.p.: 139–140 °C; FT-IR (KBr): $\bar{\nu} = 1,750$ (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 4.30$ (d, 1H, J = 12.9 Hz, PhCH₂O), 4.52 (d, 1H, J = 11.7 Hz, PhCH₂O), 4.90 (d, 1H, J = 5.1 Hz, C4-H), 5.14 (d, 1H, J = 4.8 Hz, C3-H), 6.95–7.48 (m, 14H, Ar–H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 163.6$ (C=O), 137.5, 137.1, 136.7, 132.7, 132.2, 129.2, 129.0, 128.9, 128.7, 128.6, 128.5, 128.2, 128.1, 128.0, 126.0, 124.1, 117.4 (*Ar*–C), 89.8 (C–3), 72.8 (*Ph*CH₂O), 63.6 (C–4) ppm.

General procedure for the preparation of compounds **6a–6f**

Compounds **6a–6f** were prepared from 1.0 mmol **5a–5f**, 1.1 mmol *n*-Bu₃SnH, and a catalytic amount of AIBN in 10 cm³ C₆H₆ using the protocol previously described for the *n*-Bu₃SnH reduction of 3-alkoxy-3-phenyl/benzylthio- β -lactams [28].

1-(4-Methoxyphenyl)-4-phenylazetidin-2,3-dione (6a, $C_{16}H_{13}NO_3$)

Starting from 0.10 g **5a** (0.22 mmol) and 0.073 g *n*-Bu₃SnH (0.067 cm³, 0.25 mmol). Yellowish-white crystalline solid (0.034 g, 56%); FT-IR, ¹H NMR, m.p., and CHN analysis of compound **6a** were found to be identical with the one described in Ref. [22]; UV-vis: λ_{max} (ε) = 350 (9,000) nm; ¹³C NMR (75 MHz): δ = 189.8 (C=O), 154.4 (C=O), 131.8, 130.3, 129.5, 129.3, 126.3, 119.7, 114.8 (*Ar*–C), 74.6 (C–4), 55.2 (OCH₃) ppm.

$\begin{array}{l} \mbox{4-(4-Bromophenyl)-1-(4-methoxyphenyl)azetidin-2,3-dione} \\ \mbox{(6b, $C_{16}H_{12}BrNO_3$)} \end{array}$

Starting from 0.10 g **5b** (0.19 mmol) and 0.061 g *n*-Bu₃SnH (0.056 cm³, 0.20 mmol). White solid (0.044 g, 66%); m.p.: 187–188 °C; FT-IR (KBr): $\bar{\nu} = 1,769$ (ketone C=O), 1,830 (amide C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 3.72$ (s, 3H, OMe), 5.55 (s, 1H, C4-H), 6.74– 7.39 (m, 8H, Ar–H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 189.0$ (C=O), 150.6 (C=O), 143.9, 143.4, 129.6, 129.4, 126.3, 119.5, 114.6 (*Ar*–C), 74.5 (C–4), 55.1 (OCH₃) ppm.

1,4-Bis(4-methoxyphenyl)azetidin-2,3-dione

 $(6c, C_{17}H_{15}NO_4)$

Starting from 0.10 g **5c** (0.21 mmol) and 0.068 g *n*-Bu₃SnH (0.062 cm³, 0.23 mmol). White solid (0.032 g,

50%); m.p.: 179–180 °C; FT-IR (KBr): $\bar{\nu} = 1,750$ (ketone C=O), 1,800 (amide C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 3.75$ (s, 3H, OMe), 3.81 (s, 3H, OMe), 5.26 (s, 1H, C4-H), 6.81–7.37 (m, 8H, Ar–H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 188.7$ (C=O), 152.1 (C=O), 143.1, 142.8, 129.3, 129.0, 126.1, 118.9, 114.1 (*Ar*–C), 74.2 (C–4), 55.4 (OCH₃), 55.1 (OCH₃) ppm.

4-(4-Methoxyphenyl)-1-(4-methylphenyl)azetidin-2,3-dione (6d)

Starting from 0.10 g **5d** (0.22 mmol) and 0.070 g *n*-Bu₃SnH (0.064 cm³, 0.24 mmol). White crystalline solid (0.029 g, 47%); FT-IR, ¹H NMR, m.p., and CHN analysis of compound **6d** were found to be identical with the one described in Ref. [22]; ¹³C NMR (75 MHz, CDCl₃): $\delta = 191.0$ (C=O), 153.7 (C=O), 143.3, 142.9, 129.5, 129.1, 126.3, 118.5, 113.8 (*Ar*-C), 73.9 (C-4), 55.0 (OCH₃), 21.4 (CH₃) ppm.

4-(4-Chlorophenyl)-1-(4-methylphenyl)azetidin-2,3-dione (**6e**, C₁₆H₁₂ClNO₂)

Starting from 0.10 g **5e** (0.21 mmol) and 0.070 g *n*-Bu₃SnH (0.064 cm³, 0.24 mmol). White solid (0.040 g, 64%); m.p.: 186–188 °C; FT-IR (KBr): $\bar{\nu} = 1,770$ (ketone C=O), 1,820 (amide C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 2.24$ (s, 3H, Me), 5.23 (s, 1H, C4-H), 6.92–7.44 (m, 8H, Ar–H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 190.6$ (C=O), 151.8 (C=O), 143.9, 143.8, 130.2, 129.4, 126.5, 119.7, 114.8 (*Ar–*C), 74.7 (C–4), 21.6 (CH₃) ppm.

1,4-Diphenylazetidin-2,3-dione (6f)

Starting from 0.10 g **5f** (0.24 mmol) and 0.078 g *n*-Bu₃SnH (0.072 cm³, 0.26 mmol). White solid (0.030 g, 52%); FT-IR, ¹H NMR, m.p., and CHN analysis of compound **6f** were found to be identical with the one described in Ref. [22]; UV-vis: λ_{max} (ε) = 352 (9,100) nm.

Acknowledgments We gratefully acknowledge the financial support for this work from the Indian Council of Cultural Relations, New Delhi, Government of India, under ICCR (Indo-Iraqi, CEP Schme), TF/OCF grant and Department of Science and Technology (DST), New Delhi, Government of India, project no. SR/FTP/CS-135/2006 dated 13-03-2007.

References

- 1. Imada A, Kitano K, Kintaka K, Muroi M, Asai M (1981) Nature 289:590
- Sykes RB, Cimarusti CM, Bonner DP, Floyd DM, Georgopapadakou NH, Koster WH, Liu WC, Bush K, Trejo WH, Wells JS (1981) Nature 291:48
- Burnett DA, Caplen MA, Davis HR Jr, Burrie RE, Clader JW (1994) J Med Chem 37:1733

- 4. Dugar S, Yumibe N, Clader JW, Vizziano M, Huie K, van Heek M, Compton DS, Davis HR Jr (1996) Bioorg Med Chem Lett 6:1271
- Han WT, Trehan AK, Wright JJK, Federici ME, Seiler SM, Meanwell NA (1995) Bioorg Med Chem 3:1123
- Smith DM, Kazi A, Smith L, Long TE, Heldreth B, Turos E, Dou QP (2002) Mol Pharmacol 61:1348
- 7. Kazi A, Hill R, Long TE, Kuhn DJ, Turos E, Dou QP (2004) Biochem Pharmacol 67:365
- Cossio FP, Lopaz C, Oiarbide M, Palomo C (1988) Tetrahedron Lett 29:3133, and references therein
- 9. Chincholkar PM, Puranik VG, Deshmukh ARAS (2007) Synlett 14:2242, and references therein
- 10. William RM (1989) In: Synthesis of Optically Active α-Amino Acids. Pergamon Press, Oxford
- Palomo C, Aizpurua JM, Ganboa I, Odriozola B, Maneiro E, Miranda JI, Urchegui R (1996) Chem Commun 161
- 12. Alcaide B, Almendros P, Aragoncillo C (2000) Chem Commun 757
- 13. Pezzuto JM (1997) Biochem Pharmacol 53:121
- Kingston DGI (1995) History and chemistry. In: McGuire WP, Rowinsky EK (eds) Paclitaxel in Cancer Treatment. Marcel Dekker Inc., New York
- 15. Denis J-N, Correa A, Greene AE (1990) J Org Chem 55:1975, and references therein
- Herranz R, Castro-Pichel J, Vinuesa S, Garcia-Lopaz MT (1990) J Org Chem 55:2232, and references therein
- 17. Lo YS, Sheehan JC (1972) J Am Chem Soc 94:8253
- 18. Sheehan JC, Lo YS (1973) J Org Chem 38:3227
- 19. Jen T, Frazee J, Hoover JR (1973) J Org Chem 38:2857
- 20. Bates GS, Ramaswany S (1980) Can J Chem 58:116
- 21. Tufariello JJ, Pinto DJ, Milowsky AS, Reinhardt DV (1987) Tetrahedron Lett 28:5481
- Van der Veen JM, Bari SS, Krishnan L, Manhas MS, Bose AK (1989) J Org Chem 54:5758
- 23. Giese B (1989) Angew Chem Int Ed 28:969
- Giese B (1986) Radicals in organic synthesis: formation of Carbon-Carbon bonds. Pergamon Press, Oxford
- 25. Alcaide B, Almendros P, Aragoncillo C, Redono MC (2007) J Org Chem 72:1604
- Leemans E, D'hooghe M, Dejaegher Y, Tornroos KW, Kimpe ND (2008) J Org Chem 73:1422
- 27. Bhalla A, Madan S, Venugopalan P, Bari SS (2006) Tetrahedron 62:5054
- 28. Bhalla A, Venugopalan P, Bari SS (2006) Tetrahedron 62:8291
- 29. Bhalla A, Rathee S, Madan S, Venugopalan P, Bari SS (2006) Tetrahedron Lett 47:5255
- 30. Bhalla A, Venugopalan P, Bari SS (2006) Eur J Org Chem 4943
- Bhalla A, Venugopalan P, Bhasin KK, Bari SS (2007) Tetrahedron 63:3195
- 32. Viout A, Gault H (1953) Compt Rend 237:1162
- Abraham DJ, Mehanna AS, Williams FL (1982) J Med Chem 25:1015
- Abraham DJ, Kennedy PE, Mehanna AS, Patwa DC, Williams FL (1984) J Med Chem 27:967
- Krishnaswamy D, Govande VV, Gumaste VK, Bhawal BM, Deshmukh ARAS (2002) Tetrahedron Lett 58:10092
- 36. Bari SS, Sharma AK, Sethi MK (1998) Indian J Chem 37B:1114
- 37. Georg GI, Ravikumar VT (1993) In: Georg GI (ed) The Organic Chemistry of β -lactams. Verlag Chemie, New York